Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Microbiol Spectr ; 10(3): e0044922, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1874512

ABSTRACT

Bats are considered the natural reservoir of numerous emerging viruses such as severe acute respiratory syndrome coronaviruses (SARS-CoVs). There is a need for immortalized bat cell lines to culture and investigate the pathogenicity, replication kinetics, and evolution of emerging coronaviruses. We illustrate the susceptibility and permissiveness of a spontaneously immortalized kidney cell line (Rhileki) from Blyth's horseshoe bat (R. lepidus) to SARS-CoV-2 virus, including clinical isolates, suggesting a possible virus-host relationship. We were able to observe limited SARS-CoV-2 replication in Rhileki cells compared with simian VeroE6 cells. Slower viral replication in Rhileki cells was indicated by higher ct values (RT-PCR) at later time points of the viral culture and smaller foci (foci forming assay) compared with those of VeroE6 cells. With this study we demonstrate that SARS-CoV-2 replication is not restricted to R. sinicus and could include more Rhinolophus species. The establishment of a continuous Rhinolophus lepidus kidney cell line allows further characterization of SARS-CoV-2 replication in Rhinolophus bat cells, as well as isolation attempts of other bat-borne viruses. IMPORTANCE The current COVID-19 pandemic demonstrates the significance of bats as reservoirs for severe viral diseases. However, as bats are difficult to establish as animal models, bat cell lines can be an important proxy for the investigation of bat-virus interactions and the isolation of bat-borne viruses. This study demonstrates the susceptibility and permissiveness of a continuous kidney bat cell line to SARS-CoV-2. This does not implicate the bat species Rhinolophus lepidus, where these cells originate from, as a potential reservoir, but emphasizes the usefulness of this cell line for further characterization of SARS-CoV-2. This can lead to a better understanding of emerging viruses that could cause significant disease in humans and domestic animals.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Kidney , Pandemics , Phylogeny , SARS-CoV-2
2.
Front Med (Lausanne) ; 9: 864972, 2022.
Article in English | MEDLINE | ID: covidwho-1862618

ABSTRACT

Introduction: Accurate and sensitive measurement of antibodies is critical to assess the prevalence of infection, especially asymptomatic infection, and to analyze the immune response to vaccination during outbreaks and pandemics. A broad variety of commercial and in-house serological assays are available to cater to different laboratory requirements; however direct comparison is necessary to understand utility. Materials and Methods: We investigate the performance of six serological methods against SARS-CoV-2 to determine the antibody profile of 250 serum samples, including 234 RT-PCR-confirmed SARS-CoV-2 cases, the majority with asymptomatic presentation (87.2%) at 1-51 days post laboratory diagnosis. First, we compare to the performance of two in-house antibody assays: (i) an in-house IgG ELISA, utilizing UV-inactivated virus, and (ii) a live-virus neutralization assay (PRNT) using the same Cambodian isolate as the ELISA. In-house assays are then compared to standardized commercial anti-SARS-CoV-2 electrochemiluminescence immunoassays (Elecsys ECLIAs, Roche Diagnostics; targeting anti-N and anti-S antibodies) along with a flow cytometry based assay (FACS) that measures IgM and IgG against spike (S) protein and a multiplex microsphere-based immunoassay (MIA) determining the antibodies against various spike and nucleoprotein (N) antigens of SARS-CoV-2 and other coronaviruses (SARS-CoV-1, MERS-CoV, hCoVs 229E, NL63, HKU1). Results: Overall, specificity of assays was 100%, except for the anti-S IgM flow cytometry based assay (96.2%), and the in-house IgG ELISA (94.2%). Sensitivity ranged from 97.3% for the anti-S ECLIA down to 76.3% for the anti-S IgG flow cytometry based assay. PRNT and in-house IgG ELISA performed similarly well when compared to the commercial ECLIA: sensitivity of ELISA and PRNT was 94.7 and 91.1%, respectively, compared to S- and N-targeting ECLIA with 97.3 and 96.8%, respectively. The MIA revealed cross-reactivity of antibodies from SARS-CoV-2-infected patients to the nucleocapsid of SARS-CoV-1, and the spike S1 domain of HKU1. Conclusion: In-house serological assays, especially ELISA and PRNT, perform similarly to commercial assays, a critical factor in pandemic response. Selection of suitable immunoassays should be made based on available resources and diagnostic needs.

3.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: covidwho-1015423

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), presents a challenge to laboratorians and healthcare workers around the world. Handling of biological samples from individuals infected with the SARS-CoV-2 virus requires strict biosafety measures. Within the laboratory, non-propagative work with samples containing the virus requires, at minimum, Biosafety Level-2 (BSL-2) techniques and facilities. Therefore, handling of SARS-CoV-2 samples remains a major concern in areas and conditions where biosafety for specimen handling is difficult to maintain, such as in rural laboratories or austere field testing sites. Inactivation through physical or chemical means can reduce the risk of handling live virus and increase testing ability especially in low-resource settings due to easier and faster sample processing. Herein we assess several chemical and physical inactivation techniques employed against SARS-CoV-2 isolates from Cambodia. This data demonstrates that all chemical (AVL, inactivating sample buffer and formaldehyde) and heat-treatment (56 and 98 °C) methods tested completely inactivated viral loads of up to 5 log10.


Subject(s)
COVID-19/virology , Containment of Biohazards , SARS-CoV-2 , Specimen Handling , Virus Inactivation , Animals , Cambodia , Cells, Cultured , Chlorocebus aethiops , Hot Temperature , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Load/drug effects , Viral Load/statistics & numerical data , Virus Inactivation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL